НАВЬЕ - СТОКСА УРАВНЕНИЯ - Definition. Was ist НАВЬЕ - СТОКСА УРАВНЕНИЯ
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist НАВЬЕ - СТОКСА УРАВНЕНИЯ - definition

Уравнения Навье-Стокса; Уравнение Навье — Стокса; Навье — Стокса уравнения; Уравнение Навье - Стокса

Уравнения НавьеСтокса         
Уравне́ния Навье́ — Сто́кса — система дифференциальных уравнений в частных производных, описывающая движение вязкой ньютоновской жидкости. Уравнения Навье — Стокса являются одними из важнейших в гидродинамике и применяются в математическом моделировании многих природных явлений и технических задач.
НАВЬЕ - СТОКСА УРАВНЕНИЯ      
дифференциальные уравнения движения вязкой жидкости или газа. Названы по имени А. Навье и Дж. Г. Стокса.
Навье - Стокса уравнения      

дифференциальные уравнения движения вязкой жидкости (газа). Названы по имени Л. Навье и Дж. Стокса. Для несжимаемой (плотность ρ = const) и ненагреваемой (температура Т = const) жидкости Н. - С. у. в проекциях на оси прямоугольной декартовой системы координат (система трёх уравнений) имеют вид:

Здесь t - время, x, у, z - координаты жидкой частицы, vx, vy, vz - проекции её скорости, X, Y, Z - проекции объёмной силы, p - давление, v = μ/ρ - кинематический коэффициент вязкости (μ - динамический коэффициент вязкости),

Два других уравнения получаются заменой x на у, у на z и z на x. Н. - С. у. служат для определения vx, vy, vz, р как функций x, у, z, t. Чтобы замкнуть систему, к уравнениям (1) присоединяют уравнение неразрывности, имеющее для несжимаемой жидкости вид:

Для интегрирования уравнений (1), (2) требуется задать начальные (если движение не является стационарным) и граничные условия, которыми для вязкой жидкости являются условия прилипания к твёрдым стендам. В общем случае (движение сжимаемой и нагреваемой жидкости) в Н. - С. у. учитывается ещё переменность ρ и зависимость μ от температуры, что изменяет вид уравнений. При этом дополнительно используются уравнение баланса энергии и Клапейрона уравнение.

Н. - С. у. применяют при изучении движений реальных жидкостей и газов, причём в большинстве конкретных задач ограничиваются отысканием тех или иных приближённых решений.

Лит. см. при ст. Гидроаэромеханика.

С. М. Тарг.

Wikipedia

Уравнения Навье — Стокса

Уравне́ния Навье́ — Сто́кса — система дифференциальных уравнений в частных производных, описывающая движение вязкой ньютоновской жидкости. Уравнения Навье — Стокса являются одними из важнейших в гидродинамике и применяются в математическом моделировании многих природных явлений и технических задач. Названы по имени французского физика Анри Навье и британского математика Джорджа Стокса.

В случае несжимаемой жидкости система состоит из двух уравнений:

  • уравнения движения,
  • уравнения неразрывности.

В гидродинамике обычно уравнением Навье — Стокса называют только одно векторное уравнение движения. Впервые уравнение Навье — Стокса было получено Навье (1822, несжимаемая жидкость) и Пуассоном (1829, сжимаемая жидкость), которые исходили из модельных представлений о молекулярных силах. Позже феноменологический вывод уравнения был дан Сен-Венаном и Стоксом.

В векторном виде для жидкости они записываются следующим образом:

v t = ( v ) v + ν Δ v 1 ρ p + f , {\displaystyle {\frac {\partial {\vec {v}}}{\partial t}}=-({\vec {v}}\cdot \nabla ){\vec {v}}+\nu \Delta {\vec {v}}-{\frac {1}{\rho }}\nabla p+{\vec {f}},}

где {\displaystyle \nabla }  — оператор набла, Δ {\displaystyle \Delta }  — векторный оператор Лапласа, t {\displaystyle t}  — время, ν {\displaystyle \nu }  — коэффициент кинематической вязкости, ρ {\displaystyle \rho }  — плотность, p {\displaystyle p}  — давление, v = ( v 1 , , v n ) {\displaystyle {\vec {v}}=(v^{1},\;\ldots ,\;v^{n})}  — векторное поле скорости, f {\displaystyle {\vec {f}}}  — векторное поле массовых сил. Неизвестные p {\displaystyle p} и v {\displaystyle {\vec {v}}} являются функциями времени t {\displaystyle t} и координаты x Ω {\displaystyle x\in \Omega } , где Ω R n {\displaystyle \Omega \subset \mathbb {R} ^{n}} , n = 2 , 3 {\displaystyle n=2,\;3}  — плоская или трёхмерная область, в которой движется жидкость.

Для несжимаемой жидкости уравнения Навье — Стокса следует дополнить уравнением несжимаемости:

v = 0. {\displaystyle \nabla \cdot {\vec {v}}=0.}

Обычно в систему уравнений Навье — Стокса добавляют краевые и начальные условия, например:

v | Ω = 0 , {\displaystyle {\vec {v}}|_{\partial \Omega }=0,}
v | t = 0 = v 0 . {\displaystyle {\vec {v}}|_{t=0}={\vec {v}}_{0}.}

Иногда в систему уравнений Навье — Стокса дополнительно включают уравнение теплопроводности и уравнение состояния.

При учёте сжимаемости уравнения Навье — Стокса принимают следующий вид:

ρ ( v i t + v k v i x k ) = p x i + x k { η ( v i x k + v k x i 2 3 δ i k v l x l ) } + x k ( ζ v l x l δ i k ) , {\displaystyle \rho \left({\frac {\partial v_{i}}{\partial t}}+v_{k}{\frac {\partial v_{i}}{\partial x_{k}}}\right)=-{\frac {\partial p}{\partial x_{i}}}+{\frac {\partial }{\partial x_{k}}}\left\{\eta \left({\frac {\partial v_{i}}{\partial x_{k}}}+{\frac {\partial v_{k}}{\partial x_{i}}}-{\frac {2}{3}}\delta _{ik}{\frac {\partial v_{l}}{\partial x_{l}}}\right)\right\}+{\frac {\partial }{\partial x_{k}}}\left(\zeta {\frac {\partial v_{l}}{\partial x_{l}}}\delta _{ik}\right),}

где η {\displaystyle \eta }  — коэффициент динамической вязкости (сдвиговая вязкость), ζ {\displaystyle \zeta }  — «вторая вязкость», или объёмная вязкость, δ i k {\displaystyle \delta _{ik}}  — дельта Кронекера. Это уравнение при условии постоянства вязкостей η {\displaystyle \eta } и ζ {\displaystyle \zeta } сводится к векторному уравнению

ρ ( v t + ( v ) v ) = p + η Δ v + ( ζ + η 3 ) div v . {\displaystyle \rho \left({\frac {\partial {\vec {v}}}{\partial t}}+({\vec {v}}\cdot \nabla ){\vec {v}}\right)=-\nabla p+\eta \Delta {\vec {v}}+\left(\zeta +{\frac {\eta }{3}}\right)\nabla \operatorname {div} {\vec {v}}.}

Уравнение неразрывности для сжимаемой жидкости примет вид

ρ t + ( ρ v ) = 0. {\displaystyle {\frac {\partial \rho }{\partial t}}+\nabla \cdot (\rho {\vec {v}})=0.}
Was ist Уравнения Навье — Стокса - Definition